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Abstract An amplitude-phase method is used to derive general quantization condi-
tions for energy levels in smooth double-well potentials. The resulting quantization
condition is applied to symmetric double-well potentials, where the two types of sym-
metry levels are shown to be determined by separate quantization conditions.

Keywords Mathematical methods · Semiclassical methods · Amplitude-phase
method · Double-well potentials

1 Introduction

The quantum mechanical aspect of smooth symmetric double-well potentials is a
long-standing and well-known problem. Double-well potentials arise due to quite
different physical mechanisms and occur in condensed matter physics, in chemistry,
in spectroscopy, as well as in recent topics of Bose–Fermi mixtures [1].

Several methods have been adopted and applied to the computations of energy
levels, e.g. time-independent perturbation theory [2], the WKB (Wentzel–Kramers–
Brillouin) approximation [3–6], the variation method [2–7], the analytical transfer
matrix method [8,9], the instanton method [10,11] and other numerical computations
[5,12,13]. In this list the numerical performance of the so-called amplitude-phase
method seems to have been neglected since an early attempt in reference [14].

The (semi-classical)WKBapproximation iswidely used for its simple approach and
deep understanding of the relation between classical and quantal mechanics. However,
the occurrence of classical turning points and the intricate quantal transitions involved
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as turning points come close to each other limits its use among nonspecialists of the
WKB method.

In the present study an amplitude-phase approach is applied to derive a general
quantization condition for double-well potentials, improving an early attempt of the
present idea in [14]. The insights of quantal transitions are comparable with those of
WKB results, but avoidingmuch of the analytical complexities of theWKB theory. The
initial ideas of Milne, Young and Wheeler in the 1930s [15–19] has developed slowly
over the years, with some later advances in references [14,20–23]. Applications using
two amplitude functions were recently presented for barrier transmission problems
[24] and for calculations of Regge poles [25].

Section 2 presents a non-relativistic Schrödinger equation for a general potential.
The amplitude-phasemethod for single-well and double-well bound states is presented
in Sect. 3. Details of computations and results are in Sect. 4, and conclusions are in
Sect. 5.

2 Basic Schrödinger equation

The Schrödinger equation can be written in dimensionless units as

� ′′ + R(x)� = 0, (2.1)

� is the bound-state wave function, a prime (′) denotes a derivative along an x-axis
in space. The coefficient function R(x), given by

R(x) = 2m[E − V (x)], (2.2)

contains parameters for mass (m) and energy (E), as well as the potential V (x). Two
potentials are used for numerical illustrations. One potential is given by

V (x) = x4 − λx2, m = 1/2, (2.3)

where λ is a coupling parameter with values λ = 0, 1, 6 and 10. A second potential
related to Bose-Fermi condensate mixtures, see references [1,6], is

V (x) = x2/2 + 9e−x2 , m = 1. (2.4)

3 Amplitude phase method

3.1 Single well

The amplitude-phase method used here for computations is well known [14–19,22]
and is only briefly rephrased here. Reference [14] is an excellent reading on the early
and basic ideas of the method.
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If there is a single classically allowed interval of the x-axis, where the coefficient
function satisfies R(x) > 0, a bound state wave function �(x) can be represented in
terms of an amplitude u(x) and a phase φ(x) along the entire x-axis as [14–19]

�(x) = Cu(x) sin φ(x). (3.1)

The normalization constant C may be arbitrary in the present context, but the phase
φ(x) is obtained from the amplitude function u by

φ(x) =
∫ x

−∞
u−2(x)dx, φ(−∞) = 0. (3.2)

For this representation to vanish as |x | → ∞ the phase has to satisfy

φ(+∞) = (n + 1)π, (3.3)

where φ(+∞) represents the total phase change of the wave function across the
potential well. Equation (3.3) is a Bohr-Sommerfeld-type bound-state quantization
condition, where n is the number of nodes of the wave function in the well.

As explained in references [14,25] the exact representation (3.1) is an oscillating
function only in the classically allowed region, where R(x) > 0. In classically for-
bidden regions (R(x) < 0) the phase function φ(x) converges to a constant value,
if integrated from the classically allowed region. In the present case the converged
phase value is initially zero, by choice of the lower integration limit in (3.2). This
convergence of the phase is a result of the rapid increase of the amplitude u(x). How-
ever, the phase convergence is faster than the divergence of the amplitude as the wave
penetrates in to a classically forbidden region.

The amplitude function u is a solution of a non-linear (Milne-type) differential
equation [15–19]

u′′ + R(x)u = u−3, (3.4)

where R(x) is the coefficient function for anyof the potentials given inSect. 2. Equation
(3.4) is solved numerically from certain initial conditions. The phase integral in (3.2)
can be calculated along with u, i.e. along with the integration of (3.4). For potentials
symmetric with respect to x = 0, and being finite there, it is convenient to use only
the positive x-axis with the initial conditions at x = 0 (see [14])

u(0) = R−1/4(0), u′(0) = 0, (3.5)

and integrating sufficiently far out towards x → +∞. The initial value u(0) in (3.5),
which is always strictly positive, does not generally affect the results. However, due to
‘latent’ oscillations in u(x) by ‘wrong’ initial conditions, if conditions on u(0) (3.5)
are significantly perturbed, the speed of the computation is lost. In case the coefficient
R(x) being symmetric, one can use any symmetric amplitude solution u(x) of (3.4)
satisfying (3.5), so that

φ(+∞) = 2
∫ +∞

0
u−2dx . (3.6)
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The initial value u′(0) = 0 guarantees the symmetry of the amplitude function u(x)
in that case. Since the amplitude function has no zeros on the real axis, all nodes in
the wave function are due to zeros of the sine function in (3.1). If n+1 in (3.3) is odd,
there will not be a zero at the midpoint x = 0, only so if n + 1 is even.

Note that this outline is applicable also to double-well potentials as long as the
energies are above the top of the barrier.

3.2 Double well

The present subsection contains a generalization of the original method of Milne,
containing a single amplitude function, to an amplitude-phase method using two real-
valued amplitude functions; a complex method with two amplitudes for Regge pole
calculations is presented in reference [25]. In reference [14] the use of two amplitude
functions is applied for the first time to obtain energy levels in double-well potential.
This reference refers to another reference [20,21] as the origin of the idea of using
two amplitude functions. Since the numerical results presented in [14] agree with
those of the present approach, there should be some close relations between the two
approaches. Reference [20,21] uses a method referred to as a ‘quantum momentum
method’, also based on the original ideas of Milne 1930 [15–19].

Initially there is no restriction to symmetric double-well potentials. Two asymmetric
wells are assumed with a single hump between them. The left-hand well is assumed
deeper then the right-hand well. We use one amplitude function for each well, here
uL and uR , the ones defined by initial conditions at the potential minima x = xL < 0
and x = xR > 0, respectively, i.e. from

uL ,R(xL ,R) = R−1/4(xL ,R), u′
L ,R(0) = 0. (3.7)

The two amplitude-phase representations of the wave are typically matched at the
location of the top of the barrier, assumed here to be at x = 0.

3.2.1 Left well

The bound state wave function vanishes at x = −∞ and can be represented by the
amplitude-phase solution

� = uL sin φ, φ(−∞) = 0, (3.8)

where the lower limit of the phase integral is at x = −∞, as in (3.2). This solu-
tion is evaluated at a matching point, here taken at x = 0, where the same solution
is expressed in terms of a phase-shifted (only) amplitude-phase representation (the
matching representation):

� = uL [aL cosφm + bL sin φm] , φm(0) = 0. (3.9)
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The lower limit of the phase integral φm is thus taken at x = 0. At x = 0, both
representations (3.8) and (3.9) provide equivalent expressions for � and � ′, yielding

aL = sin φL , bL = cosφL , φL = φ(0). (3.10)

Hence, at the matching point one has (with any of the two representations)

�(0) = ULaL , � ′(0) = U ′
LaL +U−1

L bL , (3.11)

where the notations UL = uL(0) and U ′
L = u′

L(0) are introduced.

3.2.2 Right well

In the right well the solution is represented in terms of the amplitude function uR in
(3.7) as a linear combination

� = uR [aR cosφm + bR sin φm] , φm(0) = 0. (3.12)

The phase φm is here (x > 0) computed in terms of uR and at the matching point we
have

�(0) = URaR, � ′(0) = U ′
RaR +U−1

R bR, (3.13)

with UR = uR(0) and U ′
R = u′

R(0). By equating � and � ′ from both sides at x = 0,
we obtain

aR =
(
UL

UR

)
sin φL , bR =

(
UR

UL

)
cosφL + (

URU
′
L −ULU

′
R

)
sin φL . (3.14)

3.2.3 Quantization condition

Finally the right-well wave has to vanish as x → +∞, which requires

aR cosφR + bR sin φR = 0, φR = φm(+∞). (3.15)

More explicitly, we find the condition

(
UL

UR

)
sin φL cosφR +

(
UR

UL

)
cosφL sin φR + (

URU
′
L −ULU

′
R

)
sin φL sin φR = 0.

(3.16)
This quantization condition is not a previously published formula, but should relate
to formulas (4a, b) in [20,21]. Their ‘quantum momentum’ method originates in the
same ideas of Milne [15–19], but results are formulated with other notions and in an
apparently different way. No numerical applications are presented in [20,21].
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3.3 Symmetric double well

A closer look at the symmetric case simplifies the general double-well quantization
condition (3.16). We find that the phases and amplitudes in (3.16) satisfy

UL = UR, U ′
L = −U ′

R, φL = φR . (3.17)

As a result of (3.17) the quantization condition can be expressed in terms of quantities
from the right half of the double well as

sin φR cosφR −URU
′
R sin

2 φR = 0. (3.18)

The last condition splits into two separate conditions:

sin φR = 0, (−) (3.19)

and
cosφR −URU

′
R sin φR = 0. (+) (3.20)

In the single-well limit, with a common potential minimum at x = 0, the two con-
ditions represent odd (−) and even (+) states, respectively. These representations
of quantizing the two level symmetries are similar to Eqs. (6)-(9) of the quantum
momentum method in [20,21].

The general ordering is that (+)/(−)-states alternate as the energy increases from
a ground state, which is a (+)-state. Their separations are very small if the two wells
are well separated, but become more and more like separations of levels in a single
well.

4 Computations and results

For symmetric double-well potentials it is sufficient to use only one half of the poten-
tial (here the right half) in the calculations. Firstly, the minimum of the potential in
this range is localized. The value of the Schrödinger coefficient R(x) at this point is
then used to initiate the integration of the Milne’s equation in two directions: from the
minimum to some distant point in the direction of x = +∞, and from the minimum
to x = 0. As the phase contributions are integrated simultaneously with the amplitude
functions, one can add appropriately the two phase contributions to obtain φR . The
values of uR and u′

R at the boundary x = 0 are also saved for evaluating the quan-
tization condition. The quantization condition is iterated using a Newton algorithm
until it is smaller than a certain tolerance. In this process an estimate of the energy
derivatives of φR , uR and u′

R are needed.
To keep track of the number of nodes in the quantal wave it is instructive to rewrite

the condition (3.19) as

φR = (n + 1)π, n = 0, 1, . . . , (−) (4.1)
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Fig. 1 The amplitude function uR(x) computed for two ground states 0(+) of V (x) = x4 − λx2 corre-
sponding to λ = 1 and 10

recalling the fact that only half the double well potential is used when the nodes are
counted. The (+)-levels always appere in between the (−)-levels, and the (+)-level
with the same quantum number n as that in (4.1) is the one next below this (−)-level.

4.1 V (x) = x4 − λx2

This symmetric potential, with a variable parameterλ, was considered in reference [26]
in another context related to energy levels. The potential minimum at x = √

λ/2 has
the value V (

√
λ/2) = −λ2/4, and at this minimum the initial value of the amplitude

function uR(
√

λ/2) = (
E + λ2/4

)−1/4
is also a minimum of uR(x).

As uR(x) is computed, it increases indefinitely as x → +∞ and increases in various
degrees to a finite value as x → +0; see Fig. 1. In Fig. 1 one observes that the value
uR(0) generally increases exponentially for a ground state as the local well becomes
deeper (larger λ). If the barrier is small and no tunneling is expected (the case λ = 1
in Fig. 1) the amplitude function uR(x) remains approximately constant.

Table 1 presents some low-lying energy levels, more or less influenced by the
barrier. For λ = 0 there is no barrier and the single-well condition (3.3) would be
equivalent to the two conditions based on half the potential. Therefore, the quantum
numbers n = 0 and 1 in (3.3) correspond to n = 0(+) and n = 0(−) from (3.20)
respectively (3.19), recalling (4.1). For λ = 1 the barrier is present, but the energy
levels are above the barrier top (E > 0). Hence, the energy levels are similar to most
single-well potentials, only slightly perturbed levels.

Table 1 shows also results for λ = 10, where (±)-levels are very close. The ground
levels n = 0would hardly be correctly obtained by approximatemethodswithout diffi-
culties. The amplitude-phase method barely yields acceptable results with a numerical
tolerance of 2.3× 10−7. Sharpening of the tolerance to 2.3× 10−10 and 2.3× 10−14

shows that the results are consistent and that the method is rather efficient with respect
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Table 1 Bound state energies as functions of λ, n(±). To illustrate the effectiveness of the method, we do
the calculations with tolerances 2.3×: 10−7, 10−10 and 10−14 resulting in E7, E10 and E14, respectively

λ n(±) E7 E10 E14

0 0(+) 1.060362 1.0603620905 1.06036209048419

0 0(−) 3.799673 3.7996730299 3.79967302980142

1 0(+) 0.657653 0.6576530052 0.65765300518072

1 0(−) 2.834536 2.8345362022 2.83453620211933

10 0(+) −20.633576 −20.6335767026 −20.6335767029477

10 0(−) −20.633546 −20.6335468841 −20.6335468844048

10 1(+) −12.379543 −12.3795437857 −12.3795437860132

10 1(−) −12.375673 −12.3756737204 −12.3756737207055

10 2(+) −5.1328375 −5.1328379615 −5.13283796180837

10 2(−) −4.9648698 −4.9648702733 −4.96487027361538

Table 2 Bound state energies as functions of n(±) of the potential V (x) = x2/2 + 9e−x2 with mass
m = 1

n(±) E7 E10 E14

0(+) 3.0753948 3.0753946678 3.07539466774414

0(−) 3.0785072 3.0785072384 3.07850723837740

1(+) 5.1383003 5.13830027735 5.13830027732138

1(−) 5.1643731 5.16437304859 5.16437304855738

2(+) 6.97139622 6.97139619594 6.97139619593572

2(−) 7.09839760 7.09839758348 7.09839758347426

15(+) 31.1833984 31.18339831956 31.1833983195843

15(−) 32.1714206 32.17142076313 32.1714207631386

Calculations are done with tolerances 2.3×: 10−7, 10−10 and 10−14 resulting in E7, E10 and E14, respec-
tively

to the numerical tolerance. However, the last two decimal digits may be insignificant
because of the lack of exact results to comparewith. They differ with those of reference
[26].

4.2 V (x) = x2/2+ 9e−x2

This potential was studied in modified form in reference [1] studying mixed spin-
1/2 and spin-0 condensates, and in reference [6] studying higher-order phase-integral
(WKB) approximations. A local minimum is at x = ln 18 > 0. In a similar way as
described in the previous subsection, one initiates the integrations in two directions to
collect phases and the values uR(0) and u′

R(0).
Amplitude-phase results for various numerical tolerances are reported in Table 2.

The lower levels are significantly influencedby the barrier and the higher levels are sim-
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ilar to those of single-well potentials. The present results agree with the exact quantal
results of reference [6] to the latter’s full (limited) 8-decimal precision. Amplitude-
phase results in Table 2 again shows a consistency and efficiency, as those in Table 1, as
the numerical tolerance is varied. Note, however, that the close-lying ground states of
this double-well potential are less close compared to those of the the previous potential
with λ = 10.

5 Conclusions and discussions

Two symmetrical double-well potential models are studied numerically by an
amplitude-phase approach. Quantization conditions are obtained for arbitrary double-
well potentials, but applied here to the symmetric case. In this case the quantization
conditions are of two types, according to different odd and even symmetries of wave
functions. Numerical results are accurate in comparison with existing ‘exact’ meth-
ods. Energy splittings of low-lying levels are well described by the amplitude-phase
method.
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